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Abstract

■ To survive in complex environments, animals need to have
mechanisms to select effective actions quickly, with minimal
computational costs. As perhaps the computationally most par-
simonious of these systems, Pavlovian control accomplishes
this by hardwiring specific stereotyped responses to certain
classes of stimuli. It is well documented that appetitive cues
initiate a Pavlovian bias toward vigorous approach; however,
Pavlovian responses to aversive stimuli are less well understood.
Gaining a deeper understanding of aversive Pavlovian re-
sponses, such as active avoidance, is important given the critical
role these behaviors play in several psychiatric conditions. The
goal of the current study was to establish a behavioral and com-
putational framework to examine aversive Pavlovian responses
(activation vs. inhibition) depending on the proximity of an

aversive state (escape vs. avoidance). We introduce a novel task
in which participants are exposed to primary aversive (noise)
stimuli and characterized behavior using a novel generative
computational model. This model combines reinforcement
learning and drift-diffusion models so as to capture effects of
invigoration/inhibition in both explicit choice behavior as well
as changes in RT. Choice and RT results both suggest that es-
cape is associated with a bias for vigorous action, whereas
avoidance is associated with behavioral inhibition. These results
lay a foundation for future work that promise to provide in-
sights into typical and atypical aversive Pavlovian responses in-
volved in psychiatric disorders, allowing us to quantify both
implicit and explicit indices of vigorous choice behavior in
the context of aversion. ■

INTRODUCTION

To survive in complex environments, animals must select
actions that result in beneficial outcomes, such as obtain-
ing food or escaping a predator. Chances of survival are
vastly improved when a decision mechanism is available
that selects actions quickly, with low computational costs
and minimal errors that might result in disadvantageous
outcomes, like loss of food or death. Fortunately, animals
are endowed with such a decision mechanism, known as
Pavlovian control. Pavlovian control provides rapid, com-
putationally efficient action selection by hard-wiring
certain actions to sets of stimuli. Although Pavlovian re-
sponses are generally advantageous, they are relatively in-
flexible because they are automatically emitted in the
presence of associated stimuli, regardless of whether
the response is appropriate to the current situation
(Hershberger, 1986; Breland & Breland, 1961). In con-
trast, a second decision controller, known as instrumen-
tal control, learns advantageous responses based on
outcomes that followed prior responses. By using trial-
and-error learning, instrumental control permits flexible
adaptation to specific environments and thus maximizes
expected outcomes over the long run. However, it is
slower and requires more computational resources than
Pavlovian control.

Pavlovian responses differ depending on the valence of
the stimulus or environmental context, promoting ap-
proach behavior toward reward-predictive stimuli and
avoidance behavior toward punishment-predictive stim-
uli (Boureau & Dayan, 2011; Huys et al., 2011; Glickman
& Schiff, 1967). Pavlovian control often results in advan-
tageous responses because these responses typically are
aligned to the statistical probabilities of outcomes in a
given environment (Lloyd & Dayan, 2016; Dayan & Huys,
2009). For example, in general, an approach response to
rewards and an avoid response to punishments are more
likely to result in beneficial outcomes than vice versa. Ad-
vantageous Pavlovian responses can also end up assisting
instrumental control. For example, Pavlovian control ini-
tiates an active approach response in the presence of
food, which helps instrumental control learn the precise
response to obtain the food (Dayan, Niv, Seymour, &
Daw, 2006). In such circumstances, the two controllers
work together to make learning fast and efficient. How-
ever, the Pavlovian controller rigidly specifies behaviors
regardless of their outcomes, whereas instrumental con-
trol adapts behaviors to maximize positive outcomes
(Dickinson & Balleine, 1994).

Experimental paradigms can capitalize on this differen-
tial outcome sensitivity between Pavlovian and instru-
mental controllers and expose Pavlovian tendencies by
creating conditions in which Pavlovian and instrumental
preferences conflict (Swart et al., 2017; Cavanagh,
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Eisenberg, Guitart-Masip, Huys, & Frank, 2013; Geurts,
Huys, den Ouden, & Cools, 2013; Guitart-Masip et al.,
2012; Huys et al., 2011; Crockett, Clark, & Robbins,
2009; Dayan et al., 2006). Experiments using such para-
digms have revealed quite consistently that appetitive
Pavlovian response tendencies promote active responses
and degrade performance when obtaining rewards re-
quires passive responses (Cavanagh et al., 2013; Guitart-
Masip et al., 2012). Further support for the pairing of
appetitive contexts and active responses is that dopamine
released in mesolimbic and nigrostriatal pathways when
rewards are larger than expected also invigorates motor
actions through the dopamine-modulated direct “go”
pathways while inhibiting striatal indirect “no-go” path-
ways (Lloyd & Dayan, 2016; Beierholm et al., 2013;
Kravitz, Tye, & Kreitzer, 2012; Frank, 2005). Thus, dopa-
mine responses during appetitive contexts facilitate
motor activity.

Although prior research has elucidated mechanisms of
appetitive responses, the corresponding responses to
aversive stimuli are less understood (Dayan & Huys,
2015). Aversive stimuli have been associated with inhibi-
tory responses (McNaughton & Corr, 2004; Graeff, Netto,
& Zangrossi, 1998), and overall, aversive contexts are as-
sociated with fewer active responses and more passive
responses, compared with rewarding (or neutral) con-
texts (Cavanagh et al., 2013; Geurts et al., 2013; Guitart-
Masip et al., 2012, 2013). Further support comes from
studies showing that serotonin is involved in both pro-
cessing aversive events and behavioral inhibition (Graeff
& Silveira Filho, 1978). For example, reducing serotonin
levels is associated with reduced inhibitory responses to
aversive outcomes (Crockett, Clark, Apergis-Schoute,
Morein-Zamir, & Robbins, 2012; Crockett et al., 2009).
Thus, Pavlovian responses to appetitive versus aversive
contexts may reflect two dissociable systems subserved
by different, potentially opponent, neurotransmitters
(Boureau & Dayan, 2011; Cools, Nakamura, & Daw,
2011; Daw, Kakade, & Dayan, 2002).

However, the exact nature of aversive Pavlovian re-
sponses is complicated by several factors. First, the va-
lence (appetitive vs. aversive)-by-response (active vs.
passive) interaction reflecting a Pavlovian bias found in
prior studies is driven by a large bias for active responses
to reward and not necessarily by an inhibitory bias for
aversive stimuli. Within only aversive trials, participants
do not show differences in the ability to learn active
versus passive responses (Cavanagh et al., 2013; Geurts
et al., 2013; Guitart-Masip et al., 2012, 2013). Thus, aver-
sive contexts are not as clearly associated with passivity as
appetitive contexts are associated with active responses.

Second, there are situations in which animals show ac-
tive and vigorous responses to aversive contexts. For ex-
ample, responses to natural aversive stimuli, such as
predator-related stimuli, depend on proximity: Distal
threats are associated with the inhibition of action, but
proximal threats elicit defensive responses to escape,

such as fighting or fleeing (Deakin & Graeff, 1991;
Blanchard & Blanchard, 1988). Animals also exhibit vigor-
ous active responses to achieve safety from experimen-
tally induced ongoing aversive states, such as a floor
with a continuous electric shock (Mellgren, Nation, &
Wrather, 1975). Furthermore, recent research showed
that participants will respond faster to larger punish-
ments when they are informed of the extent of the pun-
ishment in advance (Griffiths & Beierholm, 2017). Thus,
aversive Pavlovian responses involve both active and
passive responses depending on circumstances.
Third, the neuromodulatory systems supporting active

responses to aversive stimuli are not well understood.
Deakin and Graeff (1991) hypothesized that two seroto-
nin pathways were associated with active versus passive
defensive responses, and subsequent research has largely
supported their theory (Deakin, 2013; Paul & Lowry,
2013). Thus, this line of research implicates serotonin
systems as playing a pivotal role in execution of both ac-
tive and inhibitory behaviors to aversive stimuli. It also
suggests that neuromodulatory systems involved in active
responses to aversive contexts are unique from those
involved with active responses to appetitive stimuli.
Another, although not mutually exclusive, theory

posits that active responses to both appetitive and aver-
sive systems partially rely on overlapping mechanisms.
Here, dopamine release signals safety from an aversive
context and motivates an active response by modulating
direct and indirect pathways, similar to appetitive con-
texts (Lloyd & Dayan, 2016). This is supported by re-
search showing mesolimbic dopamine release during
aversive situations, such as physical pain (Navratilova &
Porreca, 2014). In general, understanding the neuromo-
dulatory systems involved in aversive and appetitive re-
sponses will help inform how these different contexts
influence behavior.
Furthering the understanding of aversive Pavlovian

control has the potential to provide insights into mecha-
nisms of several psychiatric disorders. Many psychiatric
conditions are characterized by both ongoing aversive
psychological states from which people seek relief (i.e.,
escape; Yager, 2015) and problematic avoidance behav-
iors. For example, behaviors such as nonsuicidal and
suicidal self-harm behaviors can be viewed as maladap-
tive coping behaviors meant to gain relief from ongoing
aversive psychological states (Nock, 2009), whereas
phobias as well as social and generalized anxiety can be
characterized as exaggerated avoidance responses (Shin
& Liberzon, 2010). Increasing our understanding of aver-
sive Pavlovian responses could provide important insight
into these forms of psychopathology.
To better understand Pavlovian responses to aversive

stimuli, we adapted a previously used reinforcement
learning (RL) paradigm (Guitart-Masip et al., 2012) that
consisted of conditions in which instrumental and
Pavlovian processes either promote congruent (e.g., ac-
tive responses to obtain a reward) or incongruent (e.g.,
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passive responses to obtain rewards) behaviors. The cur-
rent task has only aversive stimuli and uses active (go)
and passive (no-go) responses to test whether there
are different Pavlovian effects on action selection within
two aversive conditions: an escape condition, in which
participants learn a response to escape an ongoing aver-
sive state, and an avoid condition, in which participants
learn a response to avoid an impending aversive state.
We hypothesized that the escape condition would be as-
sociated with a Pavlovian bias for an active response,
whereas the avoid condition would be associated with a
passive (inhibitory) Pavlovian bias. Furthermore, we pre-
dicted that active responses to escape would lead to
more vigorous responses (as demonstrated by faster
RTs) compared with avoiding an impending punishment.

METHODS

Participants

Fifty-three participants completed the study. Fifty-two
participants were analyzed, as one participant was ex-
cluded for selecting go on every escape trial. Among the
remaining participants, ages ranged from 18 to 65 years
(M = 28.7 years, SD = 11.8 years), with 26 women.
Nearly half (44%) of the participants were of European
ancestry (n = 23), whereas 10% were of African ancestry

(n = 5), 29% were of Asian ancestry (n = 15), and the
remaining 17% of the participants were of mixed races
(n = 9). Participants were recruited from the Harvard
University Psychology Study Pool and were either com-
pensated with course credit or paid $12. The Harvard
University Institutional Review Board approved the study.

Experimental Paradigm

The paradigm (Figure 1) is adapted from a similar para-
digm by Guitart-Masip and colleagues (2012). In the cur-
rent paradigm, on every trial, participants were presented
with one of four cues (fractal images), followed by either
an aversive sound (“escape” condition) or silence
(“avoid” condition). The participants’ goal was to learn
which response (press a button: “go,” withhold a button
press: “no-go”) that more frequently resulted in silence
during feedback. As noted above, in the escape condi-
tion, the onset of the cue coincided with the onset of
the aversive sound. Here, participants had to learn the
response (go or no-go) that turned off the aversive
sound. In the avoid condition, there was no sound during
the cue presentation, and participants had to learn the
response that avoided the aversive sound turning on dur-
ing feedback. The two required responses (go, no-go)
and two conditions (escape, avoid) that affected whether

Figure 1. Experimental paradigm. (A) On each trial, one of four fractal images was presented. Participants had to learn, for each cue, whether
pressing a button (i.e., go) or withholding a button press (i.e., no-go) resulted in silence, rather than an aversive sound, during feedback. For all trials,
participants were presented with a cue for 1 sec where they were unable make a response, followed by a 2-sec target where they could
choose to go or no-go and followed by 2 sec of feedback that consisted of an aversive sound or silence, followed by a 1-sec intertrial stimulus.
During escape trials, the aversive sound played during the cue and target, whereas during avoid trials, there was no sound during the cue and target.
Participants were informed of the onset of the target when the words “Choose: Press or Not Press” appeared on the screen. (B) Response
options. On every trial, participants could choose to either go or no-go. (C) Within each condition (i.e., escape and avoid), there was one cue
where go was the correct response and one cue where no-go was the correct response. (D) Feedback was probabilistic such that a correct response
resulted in silence 80% of the time and the aversive sound 20% of the time and vice versa for an incorrect response. ITI = intertrial interval.
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the sound was played during the cue and target presen-
tation resulted in a 2 × 2 design with the following four
conditions: go-to-avoid, go-to-escape, no-go-to-avoid,
and no-go-to-escape (Figure 1). For each of the four frac-
tal cues, participants had to learn the response that most
likely resulted in silence during feedback. Following the
2 × 2 design, each cue was associated with one required
response (go or no-go). The feedback was probabilistic,
such that a required response resulted in silence during
the feedback phase 80% of the time, whereas the other
response resulted in silence 20% of the time.

Aversive stimuli consisted of a fork scraping on slate
altered with a high-frequency sound and presented over
headphones at 80–85 dB. In pilot studies, this sound and
volume induced sufficient distress (average subjective
distress rating of 7.1/10) without causing lasting effects
on participants, such as ringing ears. To increase aversion
and decrease habituation, two different clips of the
sound were played simultaneously.

Additional Measures

For transparency, we disclose all measures administered
and analyses conducted in this study. Some measures in
the current study were administered to correspond with
a separate study that included a clinical sample. Given
that these measures were collected for a purpose other
than the main goal of this study, we did not analyze the
data collected from them. The measures include self-
reported rumination and cognitive flexibility as well as
income level, educational level, and employment status.

Data Analysis

Behavioral data were first analyzed using generalized lin-
ear mixed-effects regression (GLMER) models with the
lme4 package in R (Bates, Mächler, Bolker, & Walker,
2015). To test whether accuracy to go and no-go required
responses varied as a function of Condition (escape/
avoid), we ran a logistic GLMER. The correct choice
was defined as the required response (go/no-go) that re-
sulted in the higher probability of silence during feed-
back. All GLMERs had trial accuracy (i.e., 0 = incorrect
choice, 1 = correct choice) as the dependent variable.
For every model, within-participant factors were added
as a random factor for the intercept and slopes for all
fixed factors and interactions (i.e., maximal models; Barr,
2013). We tested four GLMERs, incrementally adding
more regressors (Table 1). To assess whether the addi-
tion of a new factor resulted in an improved model
(i.e., model comparison), we used a likelihood ratio test
(De Boeck et al., 2011), implemented using the anova
function in R. Additional regressors were determined to
have improved the model enough to warrant their inclu-
sion if the p value for likelihood ratio test was <.05.

The first (null) model included only the dependent
variable and an intercept as a fixed factor in a random

intercept model. For the subsequent models, we then
added incrementally Condition (escape/avoid, M2), Re-
sponse (go/no-go, M3), and the Condition × Response
interaction (M4). After model comparison, coefficient
confidence intervals for the winning model were calcu-
lated using the lsmeans R package (Lenth, 2016). Simple
effects within significant interactions were computed
using the phia package in R, which uses Wald χ2 to
determine their significance (Martinez, 2015). Multiple
comparisons were corrected by the Holm–Bonferroni
sequential procedure.
We followed the same approach to analyze RT, except

that we used a gamma GLMER with an identity link func-
tion and RT on each trial was entered as the dependent
variable. Like the accuracy models, all models contained
random intercepts and random slopes for each partici-
pant. For both accuracy and RT, statistical significance
was set at .05 with a two-tailed test.

Computational Model

We hypothesized that Pavlovian responses for escaping
an ongoing aversive stimulus would be associated with
a bias for choosing active responses and increased vigor
as assessed by faster RTs, whereas the opposite would be
the case when avoiding an impending aversive stimulus.
Although linear mixed models could provide support for
the hypotheses, choice and RT data are analyzed inde-
pendently and we hypothesized that they are driven by
the same Pavlovian bias. Therefore, we sought to use a
computational model to identify latent processes, includ-
ing a Pavlovian bias parameter, that can capture the be-
havioral effects of both choice behavior and RT.
Many computational models of RL focus on solely

modeling response choice. Thus, these models operatio-
nalize how the values of each response (i.e., choice) are

Table 1. Model Comparison of Logistic Linear Mixed-effects
Models for Accuracy and RT

χ2 df p

Accuracy

M1 (null)

M2 condition (escape, avoid) 77.0 3 1.39E−16

M3 Condition + Response (go, no-go) 104.5 4 1.11E−21

M4 Condition × Response 239.6 5 9.34E−50

RT

M1 (null)

M2 condition (escape, avoid) 179.7 3 1.03E−38

M3 Condition + Response (go, no-go) 182.6 4 2.09E−38

M4 Condition × Response 14.0 5 .0155
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updated over the course of learning and how those up-
dated values are translated into subsequent responses.
By providing an updated value for each response through
prediction errors on a trial-by-trial basis, these models
can specify a probability distribution of responses on
each trial (Niv & Montague, 2008). Prior studies using
similar paradigms to the current study have added a
Pavlovian model parameter to demonstrate value-based
response biases, and these models have provided higher
model evidence than models without a Pavlovian param-
eter (Cavanagh et al., 2013; Guitart-Masip et al., 2012).
One important difference between the task used in these
prior studies and the one in the current study is that, in
these prior studies, participants had to learn which cues
were associated with reward and punishment over the
course of the task, whereas in the current task, like in
Swart et al. (2017), the condition (escape/avoid) was
known at the cue onset because of the presence or ab-
sence of the aversive sound. Thus, on the basis of these
task differences, we followed Swart et al. (2017) and im-
plemented a static Pavlovian bias parameter, in contrast
to these prior studies, which modeled a Pavlovian param-
eter that dynamically updated over the task.
In a tradition separate from RL models, drift-diffusion

models (DDMs) have been used to model RT data suc-
cessfully across a variety of two-choice RT tasks, such as
visual discrimination and memory tasks (Ratcliff, Smith,
Brown, & McKoon, 2016). A standard two-alternative
DDM consists of a decision variable that evolves over
time according to two components: a deterministic linear
component whose slope is given by a drift rate parameter
and a Gaussian noise component that causes the decision
variable to diffuse over time. The decision variable begins
its trajectory at a starting point and evolves stochastically
until it reaches one of two decision boundaries at which
point a response is made (see Figure 2A).
Recent work has integrated RL models and DDMs so

that a single generative model can specify a joint distribu-
tion of responses and RT (Frank et al., 2015; Milosavljevic,
Malmaud, Huth, Koch, & Rangel, 2010). These integrated
models use an RL model to track the value of the response
options on a trial-by-trial basis, and then these RL values
are passed to a DDM, where the drift rate is parametrized
as a linear function of the value (i.e., the difference in
value between the two response options determines the
drift rate). Thus, by using the DDM to define the mapping
from values to actions (i.e., policy), we can model the
dynamics of choice and RT over the course of learning
(Figure 2B; Pedersen, Frank, & Biele, 2017).
Two aspects of the models in the study warrant addi-

tional comments. First, because no-go choices are, by
definition, the absence of a response and there is no in-
dex for the timing of the decision, we modeled the no-go
option using an implicit decision boundary, consistent
with prior work supporting this assumption (Ratcliff,
Huang-Pollock, & McKoon, 2016; Gomez, Ratcliff, &
Perea, 2007). Thus, the model is fit to RTs and choice

probabilities for go choices but only choice probabilities
for no-go choices (i.e., when no-go was selected).
Second, we included a go bias, which captures individual
variability in the overall tendency to make a go response,
thus better explaining data.

We aimed to achieve two main goals using the compu-
tational modeling. First, we verified whether including a
Pavlovian response parameter captured the behavioral
results better than a model without such a parameter.
Second, we contrasted two mechanisms by which a
Pavlovian bias affects decisions. In the first mechanism,
the Pavlovian bias was modeled by allowing the starting
points to vary among the escape/avoid conditions. This
parameterization affects choice and RT by allowing the
condition to push one response option to a starting point
closer to the decision boundary, therefore requiring less
“evidence” of a value signal to select that response. Alter-
natively, in our second mechanism, the Pavlovian bias
was modeled by allowing the drift rates to vary among
escape/avoid conditions. This parameterization affects
choice and RT by allowing each condition to amplify
the value difference between go and no-go differently.
A priori, we hypothesized the first mechanism to be
more likely than the second, as studies on biases in
DDMs for perceptual decision-making tasks have found
that changes to the starting point represent a response
bias (e.g., one response is more likely to be correct),
whereas changes to the drift rate represent a stimulus
discrimination bias (e.g., one stimulus is easier to detect;
White & Poldrack, 2014).

As noted previously, in both models, the Pavlovian
parameter is modeled as a static bias that, unlike prior stud-
ies (Cavanagh et al., 2013; Guitart-Masip et al., 2012), does
not dynamically update over time. This is because the
condition (escape or avoid) was known at cue onset be-
cause of the presence or absence of the aversive sound.

Each model we tested used the following implementa-
tion to integrate RL models and DDMs. Instrumental Q
values were updated on each trial using a simple delta
rule (Rescorla & Wagner, 1972):

Qtþ1 st;atð Þ ¼ Qt st;atð Þ þ α rt−Qt st;atð Þ½ � (1)

where α is a learning rate, st is the stimulus, rt is the re-
ward, and at is the action (go or no-go) on trial t. Then,
to translate these Q values into actions and RTs, we used
the following DDM specification. Q values determined
the drift rate μt on trial t:

μt ¼ β0 þ β1 Qt st; goð Þ−Qt st; no‐goð Þ½ �
where β0 captures a constant go bias, β1 captures a go
bias shared across responses and st is the cue on trial t
and Qt(st, go) − Qt(st, no-go) represents the difference
between Q values for go and no-go. After a nondecision
time T, the drift-diffusion process starts at z, which varies
between 0 and ω (the boundary separation parameter),
and then proceeds until a bound (0 or ω) is reached.
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Following Navarro and Fuss (2009), we used a relative
parameterization of the starting point, w = z/ω, that varies
between 0 and 1. The Wiener first passage time density
defines the joint likelihood for the choice and RT on each
trial induced by the DDM (i.e., the distribution over the
time at which one of the decision boundaries is crossed).

For the first parameterizations of the Pavlovian bias
(Model 1), we fit separate starting points (w) within the
DDM for the two conditions: wescape on escape trials and
wavoid on avoid trials. In Model 2, the conditions shared
the same starting point but varied in their drift rate:

M2:

μt ¼ βescape þ β1 Qt st; goð Þ−Qt st; no‐goð Þ½ �
for escape trials and

μt ¼ βavoid þ β1 Qt st; goð Þ−Qt st; no‐goð Þ½ �

for avoid trials (see above for how these parameteriza-
tions affect decision-making). To be clear, the starting
point was set as a free parameter in both models, but
in Model 1, it consisted of two separate free parameters
for avoid and escape (across go and no-go) trials, and in
Model 2, it was a single free parameter fit across
conditions. We used the following stepwise procedure
for the computational modeling approach.

Step 1: Model Fitting

We fit the model parameters to data from each partici-
pant individually using maximum likelihood estimation
with the fast approximation of the Wiener first passage
time density derived by Navarro and Fuss (2009). The
Wiener first passage time density defines the joint likeli-
hood for the choice and RT on each trial induced by the

Figure 2. (A) A value-based
DDM schematic. Choices and
RTs are modeled in a DDM as
the combination of (1) the
starting point (w), where the
decision process begins (the
best fitting model in the current
study had two separate starting
points [wescape, wavoid] for the
two conditions); (2) the drift
rate (modeled as a linear
function of value [see below]
as well as a constant go bias [β0]
and a go bias shared [β1] across
the two possible responses
[not shown]), which guides
the trajectory of the decision
process; (3) a nondecision
time (T ), where the stimulus is
still being processed; and (4)
the boundary separation (ω),
which represents caution
(more caution will lead to
longer RTs). Thus, the stimulus
is presented and processed, the
decision processes start and are
guided by the drift rate, and a
choice is selected once the
processes reach one boundary.
(B) Example of six trials for one
of the cues with model-based
value calculations and DDMs.
On the basis of feedback, values
for each response (go, no-go)
on a given cue are updated on a
trial-by-trial basis. For example,
on Trial 1, a “go” response
is followed by silence, which
means that the value for “go” is increased. The “no-go” value is not updated as there was no no-go response. On Trial 2, a “no-go” response is
followed by the aversive sound, so the value of the “no-go” response is decreased. Again, the value of the “go” response remains unchanged.
On each trial, the DDM drift rate is modeled using the difference in value between the two responses. Early in the task, the difference in value
between the two responses is small, resulting in a smaller drift rate and longer RTs to come to a decision. As the value difference increases
over the course of the task, the drift rate increases, which leads to faster RTs. In the example shown, the starting point is closer to the go
decision boundary, which was the case in the escape condition. In the avoid condition, the results of model fitting suggest that the starting
point was closer to the no-go decision boundary, as illustrated.
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DDM (i.e., the distribution over time at which one of the
decision boundaries is crossed). We used the following
parameter constraints: learning rate (α): [0, 1]; non-
decision time (T ): [−0.2, 0.5]; boundary separation
(ω): [0.001, 20]; starting point (w): [0.001, 0.999]; and
drift rate coefficients (β): [−20, 20].

Step 2: Capturing Qualitative Effects

Our principal approach to evaluating the models was to
assess whether models captured the qualitative pattern
of results across both accuracy (e.g., higher accuracy
for go-to-escape and no-go-to-avoid) and RT (e.g., faster
RT for go-to-escape than go-to-avoid) after we computed
the expected choice probability and mean RT on each
trial.

Step 3: Quantitative Model Comparison

We also used random-effects Bayesian model selection
(Rigoux, Stephan, Friston, & Daunizeau, 2014) to com-
pare models, reporting protected exceedance probabili-
ties (the probability that a particular model is more
frequent in the population than any other model under
consideration, while accounting for the probability that
none of the models explains the data).

Step 4: Parameter Evaluation

Finally, we also compared parameter differences (starting
point or drift rate, depending on the model) between
conditions using a paired t test. For summary statistics,
we computed bootstrapped 95% confidence intervals
across participants.

RESULTS

Behavioral Results

Accuracy

Participants displayed high overall accuracy (overall: M =
90.5%, SD = 29.3%; condition: Ms = 93.1–86.7%) on the
task, showing that they learned the required responses.
We tested the effect of Condition (escape/avoid) and
Response (go/no-go) on task accuracy in four different
logistic GLMERs, where we started with a null model with
only an intercept and then incrementally added fixed fac-
tors and then an interaction term. In each case, including
additional factors improved model fit (Table 1), and add-
ing the Condition × Response interaction term signifi-
cantly improved model fit (χ2 = 239.6, p = 9.34E−50)
over a model with the two main effects of Condition
and Response alone.
For the winning model, Wald χ2 tests showed a signif-

icant Condition × Response interaction (b = −1.17, 95%
CI [−1.88, −0.46], p < .001). When breaking this down
into simple effects by Condition, we observed that, as

hypothesized, participants were more likely to go-to-
escape than no-go-to-escape, resulting in higher accuracy
for go-to-escape (M= 91.9%, SD = 10.7%) than no-go-to-
escape (M = 86.7%, SD = 15.7%; χ2 = 13.9, p < .001).
Conversely, there was a marginally significant effect
that participants were more likely to no-go-to-avoid than
go-to-avoid (χ2 = 3.6, p = .058), resulting in higher
accuracy to no-go-to-avoid (M = 93.1%, SD = 12.9%)
than go-to-avoid (M = 90.2%, SD = 14.9%). When break-
ing down the interaction by Response, participants
showed higher accuracy for no-go-to-avoid than no-go-
to-escape (χ2 = 24.3, p = .000002), whereas there was
no difference in go-to-avoid and go-to-escape accuracy
(χ2 = 0.3, p = .61; Figure 3A).

RT

Like accuracy, we analyzed RT with four GLMERs, starting
with a null model and incrementally adding fixed factors
and an interaction term. The model with the interaction
term provided the best fit (Table 1; χ2 = 14.03, p <
.016).

The winning model revealed a significant Condition ×
Response interaction (b = −0.13, 95% CI [−0.25,
−0.01], p = .035) where, although participants had faster
RTs for all required responses to escape, rather than
avoid, aversive feedback, this difference was larger for
no-go cues (no-go-to-escape: M = 775.94, SD = 223.30;
no-go-to-avoid: M = 965.35, SD = 310.38) than for go
cues (go-to-escape: M = 588.49, SD = 150.21; go-to-
avoid: M = 656.62, SD = 190.87). In addition, go-to-
escape trials had significantly faster RTs than go-to-avoid
trials (χ2 = 17.17, p< .001), suggesting that go-to-escape
induced a more vigorous response (Figure 3B).

Computational Modeling Results

As discussed above, we sought to identify a model in
which the expected choice probabilities captured the ob-
served behavioral effects for accuracy and RT. Model M0
that did not include a Pavlovian bias parameter failed to
capture most qualitative features of the accuracy and RT
results. Therefore, we discarded M0 and compared only
M1 and M2, with different parameterizations of the
Pavlovian bias.

Qualitatively, the expected choice probabilities for
both M1 and M2 captured the average accuracy dif-
ferences between Condition (i.e., higher accuracy for
go-to-escape and higher accuracy for no-go-to-avoid
[although this effect was marginally significant in the
observed data and significant in the model]; Figure 3A
[M2 is not displayed but qualitatively appears very simi-
lar]) and most of the average RT differences (i.e., faster
RT for go-to-escape than go-to-avoid; Figure 3B) as well
as captured accuracy and RT changes over the task
(Figure 3C and D). The one exception was for M2, with
separate escape and avoid drift rates. The behavioral data
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showed that RT during no-go-to-escape trials was signifi-
cantly faster than that during no-go-to-avoid trials; how-
ever, M2 failed to capture this difference. M1, with
separate starting points for escape and avoid conditions,
captured this significant RT difference but with a smaller
effect than in the observed result (Figure 3B). Both M1
and M2 also resulted in significantly higher accuracy for
go-to-escape compared with go-to-avoid, which was not
observed in the empirical data (Figure 3A). Overall, both
models captured the qualitative effects well, including
Pavlovian influence on both response choice and vigor,
but M1 captured all the effects, whereas M2 failed to
capture the no-go RT effect.

Consistent with the qualitative comparison, random-
effects Bayesian model selection (Rigoux et al., 2014)
showed that M1 was favored over M2 (Table 2). However,
like the similar qualitative effects, the model comparison
did not strongly favor M1 over M2, because both models
captured a large amount of variance in the data (Table 2).

Finally, for the favored model, M1, we assessed the
fitted parameters. A paired t test revealed that the starting
point for the escape condition was significantly higher
(i.e., biased toward a go response) compared with the
starting point for the avoid condition, t(50) = 4.74, p <
.0001. This suggests that, in the escape trials, the pres-
ence of the aversive noise pushes the starting point of
the decision-making process closer to the go decision
boundary, requiring less evidence that the go response
has a higher value than the no-go response, which makes
a go response more likely and faster. Conversely, the
presence of a potential punishment during avoid trials
pushes the starting point closer to the no-go decision
boundary, making a no-go response more likely.

DISCUSSION

Aversive Pavlovian biases have been implicated in several
psychiatric disorders including depression (Huys et al.,

Figure 3. Accuracy and RT results for the empirical data and winning model. (A) Average accuracy and (B) RT for empirical data and model
fits (derived from Model 1). Error bars denote SEM. Performance is more accurate on no-go trials than on go responses in the avoid condition
(indicating Pavlovian inhibition when aversive stimuli are impending); this pattern reverses in the escape condition (indicating Pavlovian activation
when aversive stimuli are ongoing). Consistent with this interpretation, responses are also overall slower in the avoid condition. Participants also
show overall slower RTs when they erroneously “go” on no-go cues across both escape and avoid conditions. These patterns are captured
qualitatively by Model 1, which posits that escape and avoid conditions induce different starting points for the drift-diffusion process. (C) Proportion
correct and (D) average RTs for each trial with smoothing based on robust spline smoothing (Garcia, 2010). We chose to not display the results
from Model 2 because, qualitatively, the plots for Models 1 and 2 appear very similar. Error bars represent SEM. *p < .05; **p = .058.
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2016), but we have limited understanding of how they
operate. Prior work in humans has generally associated
aversive Pavlovian biases with behavioral inhibition
(Guitart-Masip et al., 2012; Crockett et al., 2009). How-
ever, in this study, we report that aversive Pavlovian
biases can motivate behavioral activation and inhibition,
depending on the specific aversive context. Specifically,
Pavlovian response biases promote active responses to
escape an ongoing aversive stimulus while promoting
passive responses to avoid an impending aversive stimu-
lus. Furthermore, we found that active responses to es-
cape were more vigorous, as measured by faster RTs,
compared with active responses to avoid an impending
negative outcome, and this was the case regardless of
whether the context required an active response or not.
We developed a computational model that embedded

a classic RL model within a DDM to capture how Pavlovian
biases may drive these changes in both choice and re-
sponse speed. The model that best captured participants’
choice and RT patterns suggested that the Pavlovian influ-
ence is best understood as a response bias in which the
presence of an ongoing aversive state (i.e., escape)
pushed the starting point of the decision process toward
an active response (go) and the presence of an impending
punishment (i.e., avoid) pushed the starting point toward
withholding responding (no-go).
These results replicate and extend prior work ex-

amining Pavlovian response biases to valenced stimuli.
Specifically, we replicated the finding that punishment-
predictive cues were associated with Pavlovian inhibitory
no-go responses (Swart et al., 2017; Cavanagh et al., 2013;
Guitart-Masip et al., 2012) and extended this by showing
a Pavlovian bias that promotes a vigorous go response in

the context of an ongoing aversive stimulus. The current
results also add to the significant established evidence
that Pavlovian responses interfere with instrumental per-
formance. This was particularly evident for no-go-to-
escape trials (i.e., where no-go was the best choice to
stop aversive stimulus), as this condition exhibited the
poorest accuracy, similar to participants’ difficulty learn-
ing to withhold responding to obtain a reward in tasks
with an appetitive condition (Cavanagh et al., 2013;
Guitart-Masip et al., 2012). In line with this choice bias,
escape trials also demonstrated more vigorous responses
for both go and no-go cues, compared with the corre-
sponding avoid cues. Together, these results suggest that
the Pavlovian bias initiated by the aversive sound
promoted strong invigoration of action.

There was an important difference between the cur-
rent study and past studies using similar paradigms
(Cavanagh et al., 2013; Guitart-Masip et al., 2012). During
the escape condition, the valenced stimulus (i.e., the
sound) was present during the cue, whereas prior studies
have only had valenced stimuli during feedback. This
meant that the escape cues were unconditioned in that
they did not require learning to acquire an aversive
valence. On the other hand, similar to all conditions in
prior studies, the avoid cue was conditioned because it
acquired a negative valence by predicting an aversive out-
come. The strong Pavlovian activation bias on choice and
RT during escape trials may have been due, in part, to the
presence of the sound and its unconditioned nature.

Although results showing increased invigoration for
aversive trials in an escape context are not necessarily
predicted by theories positing a Valence × Action inter-
action coupling activation to reward and inhibition to

Table 2. Bootstrapped 95% Confidence Intervals for All Model Parameters

Model 1: Separate Starting Points Model 2: Separate Drift Rates

Nondecision time T [0.043, 0.119] [0.039, 0.119]

Constant go bias β0 [0.233, 0.588] −

Escape go bias βescape − [0.396, 0.792]

Avoid go bias βavoid − [0.059, 0.431]

Shared go bias β1 [3.181, 4.906] [1.401, 3.493]

Starting point w − [0.303, 0.390]

Escape starting point wescape [0.346, 0.435] −

Avoid starting point wavoid [0.285, 0.372] −

Learning rate α [0.155, 0.203] [0.170, 0.259]

Boundary separation ω [1.915, 2.184] [1.907, 2.150]

Model comparison BIC 141.8 (238.8) 169.5 (321.3)

PXP 0.53 0.47

Separate starting points capture variation in response bias, whereas separate drift rates capture variation in action discrimination. BIC = Bayesian
information criterion (mean and standard deviation across participants); PXP = protected exceedance probability.
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punishment (Boureau & Dayan, 2011; Cools et al., 2011),
they are consistent with studies on fear conditioning and
on defensive responses to natural predators. For exam-
ple, similar to escape trials in the current study, rats show
active responses to escape an unconditioned stimulus,
and similar to avoid trials, they exhibit passive responses
to cues that predict an electric shock (Myers, 1971, as
cited in Gray & MacNaughton, 2003, p. 51). Similarly, in-
fluential work on defensive responses suggest that ani-
mals have (species-specific [Bolles, 1970]) responses
depending on the threat level (Gray & MacNaughton,
2003; Deakin & Graeff, 1991): More severe, proximal
threats (e.g., predator attack) are associated with active
responses to escape, whereas less severe, distal threat
(e.g., smell of a predator) is associated with action inhi-
bition (see Gray & MacNaughton, 2003).

In the current paradigm, escape cues contained both
an unconditioned aversive stimulus (i.e., the sound)
and indicated the response required to gain relief from
the aversive stimulus. Thus, we could not tease apart
whether the observed Pavlovian go bias and increased
vigor were the result of a (putatively serotonergic)
unconditioned response to the aversive state or were
elicited (putatively through dopaminergic pathways) be-
cause the escape cue is associated with safety, in line with
the two-stage theory of active avoidance (Lloyd & Dayan,
2016; Mowrer, 1956), or a combination of both. In other
words, the presence of aversive stimuli could directly
drive the observed motor responses and increased vigor
in the form of a defensive response. Consistent with this,
studies with computer-game predators that emit real
electric shocks show that, as a predator attack became
likely, people show increased ratings of dread, locomotor
errors and activated defense-related brain circuits (Mobbs
et al., 2007, 2009).

An alternative possibility, related to the two-stage the-
ory of active avoidance and more recently worked out in
more detail by Lloyd and Dayan (2016), is that appetitive
and aversive active responses rely on neural systems that
encode the relative change from baseline rather than the
absolute negative or positive valence of the context
(Lloyd & Dayan, 2016; Mowrer, 1956). In this model,
shortly after its onset, the aversive state becomes the
baseline state from which neutral feedback represents
an appetitive outcome (i.e., safety). Achieving safety then
results in a positive reward prediction error. Consistent
with this, active avoidance (where an animal continually
avoids punishment by actively moving away from a pun-
ishment-predicting cue; Mowrer, 1956) has been success-
fully modeled using safety states as akin to obtaining a
reward (Maia, 2010). A similar process may lead people
informed of the degree of a potential punishment ahead
of a choice to show more vigorous responses to more
aversive potential punishments (Griffiths & Beierholm,
2017). Along these same lines, the observed vigorous re-
sponses to escape in the current study could have also
arisen from an instrumental mechanism that selects both

a discrete action and its vigor (Niv, Daw, Joel, & Dayan,
2007), to the extent that vigorous responses that termi-
nated the aversive state were instrumentally reinforced.
Given that participants showed a go bias from the first
trial, before learning, we argue that the results suggest
at least the presence of a Pavlovian mechanism driven
by the aversive stimulus, but it is possible that both
mechanisms are involved.
Determining the mechanisms underlying the results of

the current study is important because it may provide in-
sight into similar questions regarding aversive emotions
associated with mental disorders. Although theoretical
models have attributed different mental disorders to
functional subsystems of the overall defense systems,
these models have not been tested extensively in clinical
populations (Gray & MacNaughton, 2003). Part of our
reasoning for using an aversive sound, rather than using
physically painful stimuli, was to study aversive states that
approximated aversive psychological states. Physical pain
may involve different responses and neurocircuitry, and
using it to approximate aversive psychological states is
problematic because some psychiatric conditions, such
as nonsuicidal self-injury, are characterized by higher
physical pain tolerance (Hooley, Ho, Slater, & Lockshin,
2010) and the use of physical pain to regulate negative
affective states (Franklin, Aaron, Arthur, Shorkey, &
Prinstein, 2012).
Our computational model was similar to prior models

used in conjunction with this paradigm (Cavanagh et al.,
2013; Guitart-Masip et al., 2012) in that it used a simple
RL model and included an overall go bias to predict
choice behavior, but it also differed in several important
ways. First, the Pavlovian bias parameter was static, unlike
prior studies that included a dynamic (i.e., learned)
Pavlovian bias, because there was no ambiguity as to
the nature of the cue, similar to a previous study (Swart
et al., 2017). The fact that a paradigm model with a static
parameter was able to recapitulate the behavioral results
supports the idea that Pavlovian biases guide behavior by
influencing action selection rather than by affecting how
action values are learned (Cavanagh et al., 2013; Guitart-
Masip et al., 2012). Second, ourmodel integrated RLmodels
and DDMs. Other researchers have used similar models
(Pedersen et al., 2017; Frank et al., 2015; Milosavljevic
et al., 2010), but this was the first to do so to examine
Pavlovian biases.
To identify how Pavlovian biases exert influence, we

compared models in which Pavlovian biases started the
decision process closer to the promoted action (M1) or
amplified the signal of the promoted action (M2). We
found that both models captured most of the empirical
choice and RT effects. One slight exception was that both
M1 and M2 showed a significantly higher choice accuracy
for no-go-to-avoid compared with go-to-avoid, whereas
this effect was only marginally significant in the empirical
data. Although, overall, results for M1 and M2 were very
similar, M2 could not capture the relative speeding on
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no-go escape trials to no-go avoid trials, whereas M1 was
able to capture all of the qualitative behavioral effects
and was the quantitatively favored model. This winning
model suggests that the observed Pavlovian biases in
choice and response speed arise through biased promot-
ing of specific actions given certain contexts. Once the
context/state (in this case, escape or avoid) is recognized,
the bias is carried out by moving the starting point of the
decision-making process closer to the promoted action
and therefore requiring less “evidence” of a higher value
signal to select that response.
Our results should be considered in the context of the

study’s limitations. First, in line with previous studies
using similar tasks, there was a 1-sec gap between the on-
set of the cue and the opportunity to respond (Cavanagh
et al., 2013; Guitart-Masip et al., 2012). Although the aver-
sive context affected RT, this gap meant that the decision
process was not fully indexed by RT. This could have af-
fected which model provided the best fit to the data and
our interpretations. Second, during the task instructions,
participants received explicit practice with all four trial
types and could have inferred the design of the task,
which may explain the high accuracy across the condi-
tions. This inference would have increased the precision
of beliefs in instrumental values, thereby aiding instru-
mental control and reducing the impact of conflicting
Pavlovian biases.
In conclusion, this study suggests that Pavlovian pro-

cesses interfere with instrumental learning by promoting
action to escape an ongoing aversive stimulus and pro-
moting behavioral inhibition to avoid an impending aver-
sive stimulus. These results add nuance to prior models
that argued for valence-dependent action by showing
that negatively valenced context can spur action depend-
ing on whether the aversive stimulus is present or
impending.
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