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SUMMARY

The mesostriatal dopamine system is prominently
implicated in model-free reinforcement learning,
with fMRI BOLD signals in ventral striatum notably
covarying with model-free prediction errors.
However, latent learning and devaluation studies
show that behavior also shows hallmarks of
model-based planning, and the interaction between
model-based and model-free values, prediction
errors, and preferences is underexplored. We de-
signed a multistep decision task in which model-
based and model-free influences on human choice
behavior could be distinguished. By showing that
choices reflected both influences we could then
test the purity of the ventral striatal BOLD signal
as a model-free report. Contrary to expectations,
the signal reflected both model-free and model-
based predictions in proportions matching those
that best explained choice behavior. These results
challenge the notion of a separate model-free
learner and suggest a more integrated computa-
tional architecture for high-level human decision-
making.

INTRODUCTION

A ubiquitous idea in psychology, neuroscience, and behavioral

economics is that the brain contains multiple, distinct systems

for decision-making (Daw et al., 2005; Kahneman, 2003; Loe-

wenstein and O’Donoghue, 2004; Rangel et al., 2008; Redish

et al., 2008; Sloman, 1996). One long-prominent contender,

the ‘‘law of effect,’’ states that an action followed by reinforce-

ment is more likely to be repeated in the future (Thorndike,

1911). This habit principle is also at the heart of temporal-differ-

ence (TD) learning accounts of the dopaminergic system and its

action in striatum (Barto, 1995; Schultz et al., 1997). In the actor-

critic, for instance, a dopaminergic ‘‘reward prediction error’’

(RPE) signal plays the role of Thorndike’s reinforcer, increasing

the propensity to take actions that are followed by positive

RPEs (Maia, 2010; Suri and Schultz, 1999).
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However, it has long been known that the reinforcement prin-

ciple offers at best an incomplete account of learned action

choice. Evidence from reward devaluation studies suggests

that animals can also make ‘‘goal-directed’’ choices, putatively

controlled by representations of the likely outcomes of their

actions (Dickinson and Balleine, 2002). This realizes a sugges-

tion, dating back at least to Tolman (1948), that animals are not

condemned merely to repeat previously reinforced actions.

From the perspective of neuroscience, habits and goal-

directed action systems appear to coexist in different cortico-

striatal circuits. While these systems learn concurrently, they

control behavior differentially under alternative circumstances

(Balleine and O’Doherty, 2010; Dickinson, 1985; Killcross and

Coutureau, 2003). Computational treatments (Balleine et al.,

2008; Daw et al., 2005; Doya, 1999; Niv et al., 2006; Redish

et al., 2008) interpret these as two complementary mechanisms

for reinforcement learning (RL). The TDmechanism is associated

with dopamine and RPEs, and is ‘‘model-free’’ in the sense of

eschewing the representation of task structure and instead

working directly by reinforcing successful actions. The goal-

directed mechanism is a separate ‘‘model-based’’ RL system,

which works by using a learned ‘‘internal model’’ of the task to

evaluate candidate actions (e.g., by mental simulation; Hassabis

and Maguire, 2007; Schacter et al., 2007; perhaps implemented

by some form of preplay; Foster and Wilson, 2006; Johnson and

Redish, 2007).

Barring one recent exception (Gläscher et al., 2010) (which

focused on the different issue of the neural substrates of learning

the internal model), previous studies investigating the neural

substrates of model-free and model-based control have not at-

tempted to detect simultaneous correlates of both as these

systems learn concurrently. Thus, the way the controllers

interact is unclear, and the prevailing supposition that neural

RPEs originate from a distinct model-free system remains

untested. Here we exploited the difference between their two

types of action evaluation to investigate the interaction of the

controllers in humans quantitatively, using functional MRI

(fMRI). Model-free evaluation is retrospective, chaining RPEs

backward across a sequence of actions. By contrast, model-

based evaluation is prospective, directly assessing available

future possibilities. Thus, it is possible to distinguish the two

using a sequential choice task.

In theory, the choices recommended by model-based and

model-free strategies depend on their own, separate valuation
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A B Figure 1. Task Design

(A) Timeline of events in trial. A first-stage choice between

two options (green boxes) leads to a second-stage choice

(here, between two pink options), which is reinforced with

money.

(B) State transition structure. Each first-stage choice is

predominantly associated with one or the other of the

second-stage states, and leads there 70% of the time.
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computations. Thus, if behavior reflects contributions from each

strategy, then we can make the clear, testable prediction that

neural signals reflecting either valuation should dissociate from

behavior (Kable and Glimcher, 2007). Correlates of reward

prediction have most repeatedly been demonstrated in fMRI in

two areas: the ventromedial prefrontal cortex (vmPFC) and the

ventral striatum (ventral putamen and nucleus accumbens) (Del-

gado et al., 2000; Hare et al., 2008; Knutson et al., 2000, 2007;

Lohrenz et al., 2007; O’Doherty, 2004; Peters and Büchel,

2009; Plassmann et al., 2007; Preuschoff et al., 2006; Tanaka

et al., 2004; Tom et al., 2007). Of these, value-related signals in

mPFC are sensitive to task contingencies, and are thus good

candidates for involvement in model-based evaluation (Hamp-

ton et al., 2006, 2008; Valentin et al., 2007). Conversely, the

ventral striatal signal correlates with an RPE (McClure et al.,

2003a; O’Doherty et al., 2003; Seymour et al., 2004), and on

standard accounts, is presumed to be associated with dopa-

mine and with a model-free TD system. If so, these signals

should reflect ignorance of task structure and instead be driven

by past reinforcement, even though subjects’ behavior, if it is

partly under the control of a separate model-based system,

may be better informed.

Contrary to this hitherto untested prediction, our results

demonstrate that reinforcement-based and model-based value

predictions are combined in both brain areas, and more particu-

larly, that RPEs in ventral striatum do not reflect pure model-free

TD. These results suggest a more integrated computational

account of the neural substrates of valuation.

RESULTS

Behavior
Subjects (n = 17) completed a two-stage Markov decision task

(Figure 1) in which, on each trial, an initial choice between two

options labeled by (semantically irrelevant) Tibetan characters

led probabilistically to either of two, second-stage ‘‘states,’’

represented by different colors. In turn, these both demanded

another two-option choice, each of which was associated

with a different chance of delivering a monetary reward. The

choice of one first-stage option led predominantly (70% of

the time) to an associated one of the two second-stage

states, and this relationship was fixed throughout the experi-

ment. However, to incentivize subjects to continue learning
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throughout the task, the chances of payoff

associated with the four second-stage options

were changed slowly and independently, ac-

cording to Gaussian random walks. Theory

(Daw et al., 2005; Dickinson, 1985) predicts
that such change should tend to favor the ongoing contribution

of model-based evaluation.

Each subject undertook 201 trials, of which 2 ± 2 (mean ± 1 SD)

trials were not completed due to failure to enter a responsewithin

the 2 s limit. These trials were omitted from analysis.

The logic of the task was that model-based and model-free

strategies for RL predict different patterns by which reward ob-

tained in the second stage should impact first-stage choices

on subsequent trials. For illustration, consider a trial in which

a first-stage choice, uncharacteristically, led to the second-

stage state with which it is not usually associated, and in which

the choice then made at the second stage was rewarded. The

principle of reinforcement would predict that this experience

should increase the probability of repeating the first-stage

choice because it was ultimately rewarded. However, a subject

choosing instead using an internal model of the task’s transition

structure that evaluates actions prospectively would be ex-

pected instead to exhibit a decreased tendency to choose that

same option. This is because any increase in the value of the

rewarded second-stage option will more greatly increase the

expected value of the first-stage option that is more likely to

lead there. This is actually the first-stage option that was not

originally chosen.

Given previous work suggesting the coexistence of multiple

valuation processes in the brain (Balleine et al., 2008; Dickin-

son, 1985), we hypothesized that subjects might exhibit

a mixture of both strategies. First, to see learning effects of

this sort in a relatively theory-neutral manner, we directly as-

sessed the effect of events on the previous trial (trial n) on

the choice on the current trial (trial n+1). The two key events

on trial n are whether or not reward was received, and whether

the second-stage state presented was common or rare, given

the first-stage choice on trial n. We evaluated the impact of

these events on the chance of repeating the same first-stage

choice on trial n+1. For reasons outlined above, a simple rein-

forcement strategy [simulated in Figure 2A using the TD algo-

rithm SARSA(l) for l = 1] predicts only a main effect of reward:

an ultimately rewarded choice is more likely to be repeated,

regardless of whether that reward followed a common or rare

transition. Conversely, a model-based strategy (simulated in

Figure 2B) predicts a crossover interaction between the two

factors, because a rare transition inverts the effect of the

subsequent reward.
4–1215, March 24, 2011 ª2011 Elsevier Inc. 1205
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Figure 2. Factorial Analysis of Choice Behavior

(A) Simple reinforcement predicts that a first-stage choice resulting in reward is more likely to be repeated on the subsequent trial, regardless of whether that

reward occurred after a common or rare transition.

(B) Model-based prospective evaluation instead predicts that a rare transition should affect the value of the other first-stage option, leading to a predicted

interaction between the factors of reward and transition probability.

(C) Actual stay proportions, averaged across subjects, display hallmarks of both strategies. Error bars: 1 SEM.
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Figure 2C plots the observed choice proportions as a function

of these two factors, in the average across subjects. In order to

study effects that were statistically reliable at the level of the

population, we quantified the effects using hierarchical logistic

regression with all coefficients taken as random effects across

subjects. At the population level, the main effect of reward was

significantly different from zero (p < 1e�8, two-tailed), demon-

strating a reinforcement effect. However, the interaction

between reward and the transition probability was also signifi-

cant (p < 5e�5), rejecting a pure reinforcement account and

suggesting that subjects take the transition model into account

in making their choices. As both theories predict, there was no

significant main effect of transition likelihood (p = 0.5). Finally,

the constant term was significantly positive (p < 5e�12),

suggesting an overall tendency to stick with the same option

from trial to trial, reward notwithstanding (Ito and Doya, 2009;

Kim et al., 2009; Lau and Glimcher, 2005). We also considered

estimates of the effect sizes for each individual within this anal-

ysis (conditional on the group-level parameter estimates); the

effect of rewardwas positive (within the 95%confidence interval)

for 14/17 subjects, and the interaction was positive for 10/17

individuals, including 7 for whom the main effect of reward was

also positive. Together these data suggest that hallmarks of

both strategies are seen significantly at the population level

and within many individuals, but that there may be between-

subject variability in their deployment.

Motivated by these results, we considered the fit of full model-

based and model-free [SARSA(l) TD; Rummery and Niranjan,

1994] RL algorithms to the choice sequences. The former evalu-
Table 1. Best-Fitting Parameter Estimates, Shown as Median Plus

b1 b2 a1 a2

25th percentile 2.76 2.69 0.46 0.21

Median 5.19 3.69 0.54 0.42

75th percentile 7.45 5.16 0.87 0.71

Also shown are medians and quartiles for the negative log-likelihood (�LL) o

a normalized measure of the degree to which the model explained the choi
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ates actions by prospective simulation in a learned model; the

latter uses a generalized principle of reinforcement. The general-

ization, controlled by the reinforcement eligibility parameter l, is

that the estimated value of the second-stage state should act as

the same sort of model-free reinforcer for the first-stage choice

because the final reward actually received after the second-

stage choice. The parameter l governs the relative importance

of these two reinforcers, with l = 1 being the special case of Fig-

ure 2A in which only the final reward is important, and l = 0 being

the purest case of the TD algorithm in which only the second-

stage value plays a role.

We also considered a hybrid theory (Gläscher et al., 2010) in

which subjects could run both algorithms in parallel and make

choices according to the weighted combination of the action

values that they produce (see Experimental Procedures). We

took the relative weight of the two algorithms’ values into

account in determining the choices to be a free parameter, which

we allowed to vary across subjects but assumed to be constant

throughout the experiment. Thus, this algorithm contains both

the model-based and TD algorithms as special cases, where

one or the other gets all weight. We first verified that the model

fit significantly better than chance; it did so, at p < 0.05 for all

17 subjects (likelihood ratio tests).

Weestimated the theory’s freeparameters individually for each

subject by maximum likelihood (Table 1). Such an analysis treats

each subject as occupying a point on a continuum trading off the

two strategies; tests of the parameter estimates across subjects

seek effects that are generalizable to other members of the pop-

ulation (analogous to the random effects level in fMRI; Holmes
Quartiles across Subjects

l p w �LL p � r2

0.41 0.02 0.29 167.74 0.17

0.57 0.11 0.39 200.55 0.26

0.94 0.22 0.59 228.22 0.40

f the data at the best fitting parameters, and a pseudo-r2 statistic (p � r2),

ce data.



Table 2. Model Comparisons between Full (Hybrid) Model and Its Special Cases

Classical Bayesian

�LL

Number

Favoring Hybrid

Aggregate LRT

Favoring Hybrid �log(P(MjD))
Number

Favoring Hybrid

Aggregate Log Bayes

Factor Favoring Hybrid

Exceedance

Probability

hybrid 3364 – – 3564 – – 0.92

TD only 3418 5 c2
17 = 108

p < 5e�15

3594 11 30.0 0.031

model-based

only

3501 14 c2
51 = 273

p < 5e�16

3646 15 82.4 0.0019

l = 0 3452 14 c2
17 = 176

p < 5e�16

3627 16 62.9 0.0012

l = 1 3392 4 c2
17 = 54.5

p < 1e�5

3573 8 8.87 0.049

Shown for each model: raw negative log-likelihood (�LL); the number of subjects favoring the hybrid model on a likelihood ratio test (p < 0.05); test

statistic and p value for a likelihood ratio test against the hybrid model, aggregated across subjects; the negative log model evidence –log(P(MjD));
the number of subjects favoring the hybrid model according to the model evidence; the log Bayes factor favoring the hybrid model, in the aggregate

over subjects; and the Bayesian exceedance probability (Stephan et al., 2009), or probability that eachmodel is the most common among the five over

the population.

Table 3. Mixed Effects Parameter Estimates Used for fMRI

Regressors

b1 b2 a1 a2 l p w �LL p � r2

4.23 2.95 0.70 0.40 0.63 0.17 mean 0.51

SD 0.31

3702 0.22
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and Friston, 1998). Due to non-Gaussian statistics (because the

parameters are expected to lie in the unit range), we analyzed

the estimated parameters’ medians using nonparametric tests.

Across subjects, the median weighting for model-free RL values

was 61% (with model-based RL at 39%), which was significantly

different from both 0% and 100% (sign tests, p < 0.005), again

suggesting that both strategies were mixed in the population.

The second important parameter is the reinforcement eligibility

parameter l, which controls the two reinforcement effects in

TD, i.e., the relative influence of the estimated value of the

second-stage state and the ultimate reward on the model-free

value of the first-stage choice. Across subjects, the median esti-

mate forlwas0.57 (significantly different from0and1; sign tests,

p < 0.05), suggesting that at the population level, reinforcement

occurred in part according to TD-like value chaining (l < 1) and

in part according to direct reinforcement (l > 0).

Since analyzing estimates of the free parameters does not

speak to their necessity for explaining data, we used both clas-

sical and Bayesian model comparison to test whether these free

parameters of the full model were justified by data, relative to

four simplifications. We tested the special cases of SARSA(l)

and model-based RL alone, plus the hybrid model, using only

direct reinforcement or value chaining (i.e., with l restricted to

0 or 1). The results in Table 2 show the superiority of the hybrid

model both in the aggregate over subjects and also, in most

tests, for the majority of subjects considered individually. Finally,

we fit the hierarchical model of Stephan et al. (2009) to treat the

identity of the best-fitting model as a random effect that itself

could vary across subjects. The exceedance probabilities from

this analysis, shown in Table 2, indicate that the hybrid model

had the highest chance (with probability 92%) of being the

most common model in the population. The same analysis esti-

mated the expected proportion of each sort of learner in the pop-

ulation; here the hybrid model was dominant (at 48%), followed

by TD at 18%.

Together, these analyses provided compelling support for

the proposition that the task exercised both model-free and

model-based learning strategies, albeit with evidence for indi-
vidual variability in the degree to which subjects deploy each

of them. Next, armed with the trial-by-trial estimates of the

values learned by each putative process from the hybrid

algorithm (refit using a mixed-effects model for more stable

fMRI estimates; Table 3), we sought neural signals related to

these valuation processes.
Neuroimaging
Blood oxygenation level dependent (BOLD) responses in

a number of regions—notably the striatum and the mPFC—

have repeatedly been shown to covary with subjects’ value

expectations (Berns et al., 2001; Hare et al., 2008; O’Doherty

et al., 2007). The ventral striatum has been closely associated

with model-free RL, and so a prime question is whether BOLD

signals in this structure indeed reflect model-free knowledge

alone, even for subjects whose actual behavior shows model-

based influences.

To investigate this question, we sought voxels wherein BOLD

activity correlated with two candidate time series. The first time

series was the standard RPE based on model-free TD, using

just the time points of the transition to the second stage and

the delivery of the outcome in order to avoid uncertainty about

the appropriate baseline against which to measure the first-

stage prediction (see Supplemental Experimental Procedures).

The second time series involved subtracting these TD RPEs

from the RPEs that would arise if the predictions had been

model-based rather than model-free (Daw, in press; Friston

et al., 1998; Wittmann et al., 2008).

We adopted this approach (rather than simply including both

model-free and model-based RPEs as explanatory variables)
Neuron 69, 1204–1215, March 24, 2011 ª2011 Elsevier Inc. 1207
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Figure 3. Neural Correlates of Model-free and Model-Based Valuations in RPE in Striatum

All maps are thresholded at p < 0.001, uncorrected for display.

(A) Correlates of model-free RPE in bilateral striatum (left peak: �12 10 4, right: 10 12 �4).

(B) RPE signaling in ventral striatum is better explained by including some model-based predictions: correlations with the difference between model-based and

model-free RPE signals (left: �10 6 12, right: 12 16 �8).

(C) Conjunction of contrasts from (A) and (B) (left: �12 10 �10, right, 12 16 �6).

(D) Region of right ventral striatum where the weight given to model-based valuations in explaining the BOLD response correlated, across subjects, with that

derived from explaining their choice behavior (14 20 �6).

(E) Conjunction of contrasts from (A) and (D) (14 20 �6).

(F) Scatterplot of the correlation from (D), from average activity over an anatomically defined mask of right ventral striatum. (r2 = 0.28, p = 0.027.)
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to reduce the correlation between the regressors of interest, and

also because it encompassed the test of the null hypothesis that

RPE signaling in striatum was purely model-free. If so, then the

signal would be accounted for entirely by the model-free

regressor, and the difference time series should not correlate

significantly. If, however, the BOLD signal reflected pure

model-based values, or any combination of both, then it would

be best described by some weighted combination of the two

regressors; that is, the difference regressor would account for

residual BOLD activity in addition to that accounted for by the

model-free RPE. We tested the conjunction of the two regres-

sors to verify whether BOLD activity in a voxel was indeed signif-

icantly correlated with the weighted sum of both (Nichols et al.,

2005).

Figure 3A shows that BOLD activity correlated significantly

with the model-free RPE time series in left and right ventral stria-

tum (both p < 0.001; except where noted, all reported statistics

are corrected at the cluster level for familywise error due to

whole-brain multiple comparisons). Moreover, this activity was

better characterized, on average, as including some model-

based valuation: the model-based difference regressor loaded

significantly (right, p < 0.005, left, p < 0.05; Figure 3B) in the
1208 Neuron 69, 1204–1215, March 24, 2011 ª2011 Elsevier Inc.
same area (conjunction; right, p < 0.01, whole-brain corrected;

left, p < 0.01, small-volume corrected within an anatomically

defined mask of the bilateral nucleus accumbens; Figure 3C).

Similar results, though less strong, were also observed in

medial/vmPFC, where both model-free RPE (p < 0.001; Fig-

ure 4A) and the difference regressor indicating model-based

valuation (p < 0.01; Figure 4B) correlated significantly with

BOLD activity. However, although the conjunction between

these two maps showed voxels significant at p < 0.001 uncor-

rected, it survived whole-brain multiple comparison correction

for cluster size (at p < 0.005 corrected; Figure 4C) only when

the threshold on the conjunction map was relaxed to p < 0.005

uncorrected. (Note that cluster size correction is valid indepen-

dent of the threshold on the underlying uncorrected map,

although examining additional thresholds implies additional

multiple comparisons; Friston et al., 1993.)

These results suggested that RPE-related BOLD signals in

ventral striatum, and also in vmPFC, reflected valuations

computed at least in part by model-based methods rather than

pure TD. To investigate this activity further, we compared across

subjects neural and behavioral estimates of the degree of reli-

ance on model-based valuation. The neural and behavioral



Figure 4. Neural Correlates of Model-free and

Model-Based Valuations in RPE in mPFC

Maps have been thresholded at p < 0.001 uncorrected

(A and B) or p < 0.005 uncorrected (C) for display. (A)

Correlates of model-free RPE in mPFC (�4 66 14). (B) RPE

signaling in mPFC is better explained by including some

model-based predictions: correlations with the difference

between the two RPE signals (�4 56 14). (C) Conjunction

of contrasts from (A) and (B) (�4 62 12).
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estimates should correlate if, though computed using different

observables, they were measuring the same phenomenon, and

if RPE activity in striatum were related to a behaviorally relevant

mixture of model-based and model-free values, rather than to

one or the other. We measured the degree of model-based

valuation in the neural signal by the effect size estimated for

the model-based difference regressor (with a larger weighting

indicating that the net signal represented an RPE more heavily

weighted toward model-based values). Behaviorally, we

assessed the degree of model-based influence on choices by

the fit of the weighting parameter w in the hybrid algorithm.

Significant correlation between these two estimates was indeed

detected in right ventral striatum (p < 0.0,1 small-volume

corrected within an anatomical mask of bilateral nucleus accum-

bens; Figure 3D); and the site of this correlation overlapped

the basic RPE signal there (p < 0.01, small-volume corrected;

Figure 3E). Figure 3F illustrates a scatterplot of the effect, here

independently re-estimated from BOLD activity averaged over

an anatomically defined mask of right nucleus accumbens. The

finding of consistency between both these estimates helps to

rule out unanticipated confounds specific to either analysis.

All together, these results suggested that BOLD activity in

striatum reflected a mixture of model-free and model-based

evaluations, in proportions matching those that determine

choice behavior. Finally, in order to characterize more directly

this activity and to interrogate this conclusion via an analysis

using different data points and weaker theoretical assumptions,

we subjected BOLD activity in ventral striatum to a factorial anal-

ysis of its dependence on the previous trial’s events, analogous

to that used for choice behavior in Figure 2. In particular, the TD

RPEwhen a trial starts reflects the value expected during the trial

(as in the anticipatory activity of Schultz et al., 1997), which can

be quantified as the predicted value of the top-level action

chosen (Morris et al., 2006). For reasons analogous to those dis-

cussed above for choice behavior, learning by reinforcement as

in TD(l) (for l > 0) predicts that this value should reflect the

reward received following the same action on the previous trial.

However, amodel-based valuation strategy instead predicts that

this previous reward effect should interact with whether the

previous choice was followed by a common or rare transition.

We therefore examined BOLD activity at the start of trials in

right ventral striatum (defined anatomically) as a function of the

reward and transition on the previous trial. For reasons

mentioned above, these signals did not form part of the previ-

ously described parametric RPE analyses. In order to isolate

activity specifically related to the same action that had been
learned about on the previous trial, we restricted our assessment

to those trials in which the same actionwas chosen twice in a row

(Morris et al., 2006). As seen in Figure 5A, there was amain effect

of reward (p < 0.005), consistent with TD-like valuation. This, to

our knowledge, is the first time that RPEs in BOLD signal have

been directly shown to exhibit learning through an explicit

dependence on previous-trial outcomes (Bayer and Glimcher,

2005). Across subjects, the interaction with the transition proba-

bility—the marker for model-based evaluation—was not signifi-

cant (p > 0.4), but the size of the interaction per subject (taken

as another neural index of the per-subject model-based effect)

correlated with the behavioral index of model-based valuation

(p < 0.02; Figure 5B). This last result further confirmed that stria-

tal BOLD signal reflected model-based valuation to the extent

that choice behavior did. Indeed, speaking to the consistency

of the results, although the two neural estimates reported here

for the extent of model-based valuation in the striatal BOLD

signal (Figures 3F and 5B) were generated from different analyt-

ical approaches, and based on activity modeled at different time

points within each trial, they significantly correlated with one

another (r2 = 0.37; p < 0.01).

DISCUSSION

We studied human choice behavior and BOLD activity in a two-

stage decision task that allowed us to disambiguate model-

based andmodel-free valuation strategies through their different

claims about the effect of second-stage reinforcement on first-

stage choices and BOLD signals. Here, ongoing adjustments

in the values of second-stage actions extended the one-shot

reward devaluation challenge often used in animal conditioning

studies (Dickinson, 1985) and also the introduction of novel goals

as in latent learning (Gläscher et al., 2010): they continually

tested whether subjects prospectively adjusted their prefer-

ences for actions leading to a subsequent incentive (here, the

second-stage state) when its value changed. Following Daw

et al. (2005), we see such reasoning via sequential task structure

as the defining feature that distinguishes model-based from

model-free approaches to RL (although Hampton et al., 2006,

and Bromberg-Martin et al., 2010 hold a somewhat different

view: they associate model-based computation with learning

nonsequential task structure as well).

We recently used a similar task in a complementary study

(Gläscher et al., 2010) that minimized learning about the rewards

(by reporting them explicitly and keeping them stable) to isolate

learning about the state transition contingencies. Here, in
Neuron 69, 1204–1215, March 24, 2011 ª2011 Elsevier Inc. 1209



A B Figure 5. Factorial Analysis of BOLDSignal at Start

of Trial, from Average Activity over an Anatomical

Mask of Right Nucleus Accumbens

(A) Signal change (relative to mean) as a function of

whether the choice on the previous trial was rewarded or

unrewarded, andwhether that occurred after a common or

rare transition (compare Figure 2C). Error bars: 1 SEM.

(B) Scatterplot of the correlation, across subjects,

between the contrast measuring the size of the interaction

between reward and transition probability (an index of

model-based valuation), and the weight given to model-

based versus model-free valuations in explaining choice

behavior. (r2 = 0.32, p = 0.017).
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contrast, we minimized transition learning (by partly instructing

subjects) and introduced dynamic rewards to allow us to study

the learning rules by which neural signals tracked them. This,

in turn, allowed us to test an uninvestigated assumption of the

analysis in the previous paper, i.e., the isolation of model-free

value learning as expressed in the striatal PE.

Our previous computational theory of multiple RL systems in

the brain (Daw et al., 2005) focused on a dynamic mechanism

for trading off the reliance on model-based and model-free valu-

ations based on their relative uncertainties. In the current task,

the ever-changing rewards should keep the tradeoff roughly

constant over time, allowing us to focus on the broader two-

system structure of this theory. Rather than confronting the

many (unknown) factors that determine the uncertainties of

each system within each subject, we treated the balance

between the two processes as exogenous, controlled by

a constant free parameter (w) whose value we could estimate.

Indeed, consistent with our intent, there was no significant trend

(analyses not presented) toward progressive habit formation

(Adams, 1982; Gläscher et al., 2010).

Nevertheless, consistent with findings from animal learning

(Balleine and O’Doherty, 2010; Balleine et al., 2008; Dickinson,

1985; Dickinson and Balleine, 2002), we found clear evidence

for both TD- and model-like valuations, suggesting that the brain

employs a combination of both strategies. The standard view is

that the two putative systems work separately and in parallel,

a view reinforced by the strong association of the mesostriatal

dopamine systemwithmodel-free RL, and the fact that, in animal

studies, each system appears to operate relatively indepen-

dently when brain areas associated with the other are lesioned

(Killcross and Coutureau, 2003; Yin et al., 2004; Yin et al.,

2005). Also consistent with this idea, previous work (Hampton

et al., 2006, 2008) suggested that model-based influences on

the vmPFC expected value signal, but did not test for additional

model-free influences there, nor conversely, whether model-

based influences also affected striatal RPEs. Here we found

that even the signal most associated with model-free RL, the

striatal RPE, reflects both types of valuation, combined in

a way that matches their observed contributions to choice

behavior. The finding that a similar result in vmPFC was weaker

may reflect the fact that neural signaling there is, in some studies,

better explained by a correlated variable, expected future value,

and not RPE per se (Hare et al., 2008); residual error due to

such a discrepancy could suppress effects there. However, in
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a sequential task these two quantities are closely related, thus,

unlike Hare’s, the present study was not designed to dissociate

them.

Our ventral striatal finding invites a reevaluation of the stan-

dard account of RPE signaling in the brain, because it suggests

that even a putative TD system does not exist in isolation from

model-based valuation. One possibility about what might

replace this account is suggested by contemplating an infelicity

of the algorithm used here for data analysis. In order to reject the

null hypothesis of purely model-free RPE signaling, we defined

a generalized RPE with respect to model-based predictions as

well. However, this augmented signal was nugatory, in the sense

that model-based RPEs played no role in our account of choice

behavior. Indeed, model-based learners do not rely on model-

based RPEs: the learning problem they face—tracking state

transition probabilities and immediate rewards rather than

cumulative future rewards—demands different training signals

(Gläscher et al., 2010).

This apparent mismatch encourages consideration of a hybrid

of a different sort. We have so far examined theories in which

model-based and model-free predictions compete directly to

select actions (Daw et al., 2005). However, model-based and

model-free RPEs could also usefully be integrated for training.

For instance, consider the standard actor-critic account (Barto

et al., 1983; Barto, 1995). This uses RPEs derived from model-

free predictions (the critic) to reinforce action selection policies

(the actor). Errors in model-based predictions, if available, could

serve the same purpose. A model-free actor trained, in part, by

such a model-based critic would, in effect, cache (Daw et al.,

2005) or memorize the recommendations of a model-based

planner, and could execute them subsequently without addi-

tional planning.

Thecomputational literature onRL includes some related ideas

in algorithms, such as prioritized sweeping (Moore and Atkeson,

1993),whichcaches the results ofmodel-basedevaluation (albeit

without a model-free component), and Dyna (Johnson and

Redish, 2005; Sutton, 1990), which trains a model-free algorithm

(though offline) using simulated experiences generated from

a world model. In neuroscience, various theories have been

proposed in which a world model impacts the input to the

model-free system (Bertin et al., 2007; Daw et al., 2006a; Doya,

1999; Doya et al., 2002). The architecture suggested here more

closely resembles the ‘‘biased’’ learning hypothesized by Doll

et al. (2009), according to which top-down information (there
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providedbyexperimenter instructions rather thana learnedworld

model) modifies the target of model-free RL. Outside the domain

of learning, striatal BOLD responses are indeed affected by

values communicated by instruction rather than experience (Fitz-

gerald et al., 2010; Tom et al., 2007) and also by emotional self-

regulation (Delgado et al., 2008).

Further theoretical work is needed to characterize the different

algorithms suggested by this general architecture. However, in

general, by preserving the overall structure of parallel model-

based and model-free systems—albeit systems that would

exchange information at an earlier level—the proposal of

a model-based critic would appear to remain consistent with

the lesion data suggesting that the systems can function in isola-

tion (Killcross and Coutureau, 2003; Yin et al., 2004, 2005), and

with behavioral data demonstrating that distinct decision

systems may have different properties and can be differentially

engaged in different circumstances (Doeller and Burgess,

2008; Frank et al., 2007; Fu and Anderson, 2008). It also remains

consistent with other fMRI studies (Doeller et al., 2008; Poldrack

et al., 2001; Venkatraman et al., 2009) suggesting that overall

activity in different brain systems associated with either system

canmodulate with time or circumstances, presumably in relation

to the extent that either process is engaged.

Apart from training, a different use for model-based RPEs

would be for online action evaluation and selection. In particular,

Doya (1999) proposed that a world model could be used to

predict the next state following a candidate action, and that

a dopaminergic RPE with respect to that projected state could

then be used to evaluate whether the action was worth taking.

(A related scheme was suggested by McClure et al., 2003b;

Montague et al., 1995, 1996.) RPEs for planning would appear

to be categorically different in timing and content than RPEs

for learning, in that the former are triggered by hypothetical state

transitions and the latter by actual ones, as in the effects

reported here. The Doya (1999) circuit also differs from a full

model-based planner in that it envisions only a single step of

model-based state lookahead; however, to test this limitation

would require a task with longer sequences.

In the present study, as in most fMRI studies of RPEs, our

effects focused on ventral striatum, and we did not see any

correlates of the organization of striatum into components asso-

ciated with different learning strategies as suggested by the

rodent literature (Yin et al., 2004, 2005). Furthermore, although

there is evidence suggesting that RPE effects in the ventral stria-

tal BOLD signal reflect, at least in part, dopaminergic action there

(Knutson and Gibbs, 2007; Pessiglione et al., 2006; Schönberg

et al., 2010), the BOLD signal in striatum likely conflates multiple

causes, including cortical input and local activity, and it is thus

not possible to identify it uniquely with dopamine. Indeed, it is

possible that, even if the effects attributed to our model-free

RPE regressor are dopaminergic in origin, the residual effects

captured by the model-based difference regressor in the same

voxels arise from other sources. The questions raised by the

present study thus invite resolution by testing a similar multistep

task in animals using dopamine unit electrophysiology or voltam-

metry. In this respect, recent results by Bromberg-Martin et al.

(2010) showing that, in a serial reversal task (albeit nonsequen-

tial), a dopaminergic RPE response is more sophisticated than
a basic TD theory would predict, provide a tantalizing clue that

our results might hold true of dopaminergic spiking as well.

Overall, by demonstrating that it is feasible to detect neural

and behavioral signatures of both learning strategies, the

present study opens the door to futurewithin-subject studies tar-

geted at manipulating and tracking the tradeoff dynamically, and

thence, at uncovering the computational mechanisms and

neural substrates for controlling it. Such metacontrol of decision

systems is of particular practical importance, because, for

instance, the compulsive nature of drug abuse has been

proposed to result from aberrant expression of habitual control

(Everitt and Robbins, 2005), and similar mechanisms have

also, plausibly, been linked to other serious issues of self-

control, including undersaving and overeating (Loewenstein

and O’Donoghue, 2004).

EXPERIMENTAL PROCEDURES

Participants and Behavioral Task

Seventeen healthy adults (five female; mean age 25.8 years) participated in this

study. All participants gave written informed consent, and the study was con-

ducted in accordance with the guidelines of the local ethics committee.

The task consisted of 201 trials, in three blocks of 67, separated by breaks.

The events in the trial are sketched in Figure 1A. Each trial consisted of two

stages. In the first stage, subjects used an MRI compatible button box to

choose between two options, represented by Tibetan characters in colored

boxes. If subjects failed to enter a choice within 2 s, the trial was aborted.

The chosen option rose to the top of the screen, while the option not chosen

faded and disappeared. At the second stage, subjects were presented with

either of two more choices between two options (‘‘states’’), and entered

another choice. The second choice was rewarded with money (depicted by

a pound coin, though subjects were paid 20% of this amount), or not (depicted

by a zero). Trials were separated by an intertrial interval of randomized length,

on average about 1 TR.

Which second-stage state was presented depended, probabilistically,

on the first-stage choice, according to the transition scheme shown in Fig-

ure 1B. The assignment of colors to states was counterbalanced across

subjects, and the two options at each state were permuted pseudorandomly

between left and right from trial to trial. Each bottom-stage option was re-

warded according to a probability associated with that option. In order to

encourage ongoing learning, these reward probabilities were diffused at

each trial by adding independent Gaussian noise (mean 0, SD 0.025), with re-

flecting boundaries at 0.25 and 0.75.

In a computerized training session prior to the fMRI task, subjects were in-

structed that the reward probabilities would change, but those controlling the

transitions from the first to the second stage would remain fixed. They were

also instructed about the overall structure of the transition matrix, specifically,

that each first-stage option was primarily associated with one or the other of

the second-stage states, but not which one. Prior to the scanning session,

to familiarize themselves with the structure of the task, subjects played 50 trials

on a practice task using a different stimulus set.

Behavioral Analyses

We first conducted a logistic regression in which the dependent variable was

the first-stage choice (coded as stay versus switch), and the explanatory vari-

ables were the reward received on the previous trial, a binary indicator variable

indicating whether the previous trial’s transition was common or rare, and the

interaction of the two. We took all coefficients as random effects across

subjects, and estimated this multilevel regression using the lme4 linear mixed

effects package (Bates and Maechler, 2010) in the R statistical language

(R Development Core Team, 2010). We also extracted posterior effect size

estimates (conditional on the estimated population-level prior) and confidence

intervals from the posterior covariance for each of the individuals from this fit.

The predictions in Figures 2A and 2B are derived from simulations of SARSA(1)
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and model-based algorithms (below), using the parameters best fit to the

subjects’ data within each class of algorithm.

Computational Model of Behavior

In a second set of analyses, we fit choice behavior to an algorithm that is

similar to the hybrid algorithm of Gläscher et al. (2010). In particular, it

learned action values via both model-based RL (explicit computation of Bell-

man’s equation) and by model-free SARSA(l) TD learning (Rummery and Nir-

anjan, 1994), and assumed choices were driven by the weighted combination

of these two valuations. The relative weighting was controlled by a free

parameter w, which we assumed to be constant across trials. We also

computed TD RPEs with respect to both the model-free and model-based

valuations, and, for fMRI analysis, defined a difference regressor as the

difference between them. Full equations are given in Supplemental Experi-

mental Procedures.

Behavioral Estimation

For behavioral analysis, we estimated the free parameters of the algorithm

separately for each subject, to maximize the log-likelihood of the data (from

the log of Equation 2 summed over all trials; see Supplemental Information),

for the choices actually made conditioned on the states and rewards previ-

ously encountered. We constrained the learning rates to lie between zero

and one, but allowed l and w (which also nominally range between zero and

one) to float arbitrarily beyond these boundaries, so as to make meaningful

the tests of whether the median estimates were different from the nominal

boundaries across the population.

For classical model comparison, we repeated this procedure for the nested

subcases, and tested the null hypothesis of the parametric restriction (either

individually per subject or for likelihoods aggregated over the population) using

likelihood ratio tests. For Bayesianmodel comparison, we computed a Laplace

approximation to the model evidence (MacKay, 2003) integrating out the free

parameters; this analysis requires a prior over the parameters, which we took

to be Beta(1.1,1.1) for the learning rates, l and w, Normal(0,1) for p, and

Gamma(1.2,5) for the softmax temperatures, selected so as to be uninforma-

tive over the parameter ranges we have seen in previous studies, and to roll off

smoothly at parametric boundaries. We also fit the model of Stephan et al.

(2009), which takes model identity as a random effect, by submitting the Lap-

lace-approximated log model evidences to the spm_BMS routine from SPM8

(http://www.fil.ion.ucl.ac.uk/spm/software/spm8/).

Thus, we performed all behavioral analyses assuming the parameters (and in

some cases the model identity) to be random effects across subjects.

However, to generate regressors for neural analyses on a common scale,

we refit the algorithm to the choices, taking only w as a random effect, instan-

tiated once per subject, and assuming common values for the other parame-

ters. This is because in these sorts of algorithms, noise and variation in param-

eter estimates from subject to subject results, effectively, in a rescaling of

regressors between subjects, which suppresses the significance of neural

effects in a subsequent second-level fMRI analysis, producing poor results

(Daw, in press; Daw et al., 2006b; Gershman et al., 2009; Schönberg et al.,

2007, 2010).

fMRI Procedures

Functional imaging was conducted using a 1.5T Siemens Sonata MRI scan-

ner to acquire gradient echo T2*-weighted echo-planar images (EPI)

with BOLD contrast. Standard preprocessing was performed; see Supple-

mental Experimental Procedures for full details of preprocessing and

acquisition.

fMRI Analysis

The fMRI analysis was based around the time series of model-free and model-

based RPEs as generated from the simulation of themodel over each subject’s

experiences. We defined two parametric regressors—the model-free RPE,

and the difference between the model-free and model-based RPEs. The latter

regressor characterizes how net BOLD activity would differ if it were correlated

with model-based RPEs or any weighted mixture of both. For each trial,

the RPE time series were entered as parametric regressors modulating

impulse events at the second-stage onset and reward receipt. To test the
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correspondence between behavioral and neural estimates of themodel-based

effect, we also included the per-subject estimate of the model-based effect

(w, above) from the behavioral fits as a second-level covariate for the differ-

ence regressor. A full description of the analysis is given in Supplemental

Experimental Procedures.

For display purposes, we render activations at an uncorrected threshold of

p < 0.001 (except relaxing this in one case to p < 0.005), overlaid on the

average of subjects’ normalized structural images. For all reported statistics,

we subjected these uncorrected maps to cluster-level correction for family-

wise error due to multiple comparisons over the whole brain, or, in a few cases

(noted specifically), over a small volume defined by an anatomical mask of

bilateral nucleus accumbens. This mask was hand-drawn on the subject-

averaged structural image, according to the guidelines of Breiter et al. (Ball-

maier et al., 2004; Breiter et al., 1997; Schönberg et al., 2010)—notably,

defining the nucleus’ superior border by a line connecting the most ventral

point of the lateral ventricle to the most ventral point of the internal capsule

at the level of the putamen. Conjunction inference was by the minimum t

statistic (Nichols et al., 2005) using the conjunction null hypothesis. The differ-

ence regressor was orthogonalized against the RPE regressor, so that up to

minor correlation that can be reintroduced by whitening and filtering, it

captured only residual variation in BOLD activity not otherwise explained by

the model-free RPE. However, note that conjunction inference via the

minimum t statistic is valid even when the conjoined contrasts are not inde-

pendent (Nichols et al., 2005).
ROI Analyses

We also used the right-hemisphere portion of the mask of nucleus accumbens

(right being the side on which we have previously observed stronger RPE

activity; e.g., Daw et al., 2006b; Wittmann et al., 2008) to define the ROI for

two analyses conducted with the MarsBaR ROI toolbox (Brett et al., 2002).

First, average activity from the region was extracted and subjected to the

same analysis as described above, to produce Figure 3F. Second, the activity

from the region was subject to a second regression analysis using a different

design, which tagged the first-stage onset of each trial with an impulse

regressor of one of five types: switches (trials on which the opposite first-stage

choice from the one on the previous trial was made) and stays (four types of

events modeling all combinations of the factors reward versus nonreward

and common versus rare transition in the previous trial). An additional nuisance

regressor was included at the time of outcomes. Per-subject effect sizes

for the four stay regressors were subject to a 2 3 2 repeated-measure

ANOVA, and, additionally, the value for each subject of the contrast measuring

the interaction of the two factors ([reward/common minus nonreward/

common] minus [reward/rare minus nonreward/rare]) was correlated with the

weight given to model-based values (the estimated parameter w) from the

behavioral fit.
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