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Many human everyday decisions are parts of
plans to reach a higher-level goal; unfortu-
nately, the computational cost of planning
increases steeply with the length of the se-
quence to be planned. So how do we manage
to plan, often near optimally, given the
limited capacity of our brains? In PNAS,
Huys et al. (1) suggest that we might achieve
our goals by cleverly fragmenting the decision
tree into subpaths and retrieving frequently
used subpaths from memory. However, they
also warn that prematurely discarding paths
that traverse unpleasant states might lead to
strategies that are suboptimal overall.
Imagine you live at Charing Cross and

want to take the London Tube (subway) to
watch a film in Notting Hill (Fig. 1A). What
will you do? One option is to hop on the
yellow Circle Line that takes you directly
there. Alternatively, you could change trains
at Oxford Circus and optimize physical dis-
tance while trading the notoriously unreli-
able Circle Line for the unbearably crowded
Oxford Circus. Solving such multistep plan-
ning problems is computationally expensive,
yet humans solve them routinely and with
seemingly minimal effort. Often, we make
up plans as we go, and interlace them with
our other plans (as unpleasant as it is to
change at Oxford Circus, it will give you a
chance to drop off a pair of trousers that need
mending at a shop nearby).
Huys et al. shed light on this fundamental

and intriguing puzzle of human cognition by
showing that we spontaneously and flexibly
combine different heuristics tominimize com-
putational cost. In a task with a structure that
is rather similar to the tube example (Fig. 1B),
they placed participants in a location ran-
domly and rewarded them (or levied costs)
for each transition to another location. Im-
portantly, although most transitions resulted
in only small gains or losses, three of the
transitions were punished heavily (−70) and
one provided a large reward (+140). The
participants’ task was to plan a sequence of
three to five moves that would maximize
their overall returns.

One unique feature of the study of Huys
et al. is that they did not instruct partici-
pants as to how to achieve this goal but
rather just recorded their behavior. This
way the authors could observe and model
how humans spontaneously generate and
combine different heuristics to solve a com-
plex (but naturalistic) planning task. They
found evidence for three different strategies:
pruning, fragmentation, and memoization.
The first one, pruning, has been observed
before (2) and refers to the heuristic of
heavily discounting rewards that come after
a large punishment, such that paths that
include negative events are effectively ig-
nored. In our example, you might have
had a few really bad experiences wading
through the masses at Oxford Circus and
therefore decided to stay away from paths
that include this hub regardless of how
good they are. The second heuristic is frag-
mentation; when using this strategy, the
task at hand is split up hierarchically into
several subgoals, thus allowing shorter-horizon
planning to each subgoal. Fragmentation
is intimately related to the third strategy,
memoization, which refers to storing and re-
membering past paths rather than com-
puting the same old paths anew every
time. For example, if you work near Totten-
ham Court Road, you might use your mem-
oized fragment of how to get there when
developing your intention to go to the cin-
ema. On the other hand, if you are more
frequently at Victoria station, you might be
tempted to use the Circle Line. Huys et al.
(1) show that, even in their simplified
task, different individuals reuse different
fragments, depending on their early expe-
riences with the task.
In addition to delineating these different

heuristics in a convincing way, Huys et al. use
computational modeling to show that the
fragmentation used by participants was near
optimal: the decision tree was fragmented
such that computational costs were mini-
mized while still allowing participants to
choose the best option. However, beyond
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Fig. 1. (A) A schematic overviewof the London tube (subway),
showing the stations mentioned in the text. Navigating a city
using public transit is a complex planning problem that humans
solve with apparent ease. © Transport for London. Reproduced
by kind permission of Transport for London. (B) The task structure
that Huys et al. use to explore the heuristics that humans spon-
taneously use to solve complex planning problems. At the be-
ginning of each trial, participants were placed in one of six states
(gray circles) and asked to make three to five transitions that
would maximize their overall gains (rewards and costs are in-
dicated by the numbers on the arrows). Yellow and blue lines
indicate the decision tree described in C. (C) An example of a five-
step decision tree for a trial starting at state 5. The blue path
indicates thesolution thatwaspreferredbyparticipants.Although
this path leads to slightly lower rewards than the optimal yellow
path (60 instead of 70 points), the used heuristics (pruning,
fragmentation, and memoization; see text) allowed participants
to greatly reduce computational cost of navigating the virtual city.
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their computational advantages, these strat-
egies were slightly suboptimal in terms of
reaping rewards. For example, imagine
starting at state 5 and being asked to plan a
five-step journey (Fig. 1B). The optimal tra-
jectory (shown by the yellow arrows) is 5-1-
2-5-1-2, which travels from state 1 to state
2 twice, thereby winning +280 that offsets
the costs associated with this route. How-
ever, participants in the experiment most
often chose the sequence shown in blue.
Huys et al. provide several explanations for
why the blue sequence might seem more at-
tractive than the yellow sequence. First, prun-
ing the parts of the tree that involve large
negative events (the star in Fig. 1C) would
mean that planning the yellow sequence
would often not go beyond the first step.
Second, participants predominantly frag-
mented the task into subpaths that end
with the highly rewarding 1-2 transition
(Fig. 1C). From this perspective, the blue
sequence also seems superior because the
total reward until the end of the first frag-
ment is larger than in the yellow se-
quence. Interestingly, the blue sequence
defies “Pavlovian approach behavior” (3,
4), a form of automatic behavior that would
lead participants to take the shortest path
to the highest reward (5), suggesting that
this particular suboptimal choice was due
to deliberation and not impulsivity (al-
though in other cases, Pavlovian behavior
was sometimes observed) (1, 2). Indeed, to
give full credit to the study participants and
their computationally frugal mental heuris-
tics, this suboptimal strategy is not far from
optimal—it is the second best sequence of

states, which is a very respectable result given
the complexity of the task.
With their elegant task design, Huys et al.

open the door to a host of follow-up ques-
tions. For example, the heuristics they discuss
all rely on some salient subgoals; that is, they
can be characterized by sentences like “avoid
going through the large loss” or “aim for the
large win.” One central question is: How ex-
actly do humans decide how to fragment

Huys et al. suggest that
we might achieve our
goals by cleverly frag-
menting the decision
tree into subpaths and
retrieving frequently
used subpaths from
memory.
their environment? Hierarchical fragmenta-
tion is an excellent computational shortcut
(6), but figuring out the optimal hier-
archical decomposition of the task is a
computationally formidable task in itself
(7). In the study of Huys et al., participants

used the salient +140 reward to guide this
decision. However, it is unclear if frag-
mentation would still be near optimal in
the absence of such salient cues, or rather,
would alternative heuristics emerge instead.
Relatedly, it is interesting to ask how these
salient cues relate to subgoals and bot-
tleneck states (states that are gateways to
other parts of the task space)—concepts
frequently discussed in the literature on
solving decision problems with a hierar-
chical structure (8). Finally, behavior and
reaction times in the task indicated that if
a useful fragment was not available at the
current location, participants’ strategy was
to move one station further along the
circle and try to plan from there. One
might worry that this strategy is specific to
the task structure used here (or to the
London Tube!); however, such a “divide and
conquer” strategy might actually be more
generally useful. Generalizing the interesting
results of Huys et al. to other planning
domains is an obvious next step.

ACKNOWLEDGMENTS. Funding was provided by the
Templeton Foundation and Army Research Office Award
W911NF-14-1-0101.

1 Huys QJM, et al. (2015) Interplay of approximate planning
strategies. Proc Natl Acad Sci USA 112:3098–3103.
2 Huys QJM, et al. (2012) Bonsai trees in your head: How the
pavlovian system sculpts goal-directed choices by pruning decision
trees. PLOS Comput Biol 8(3):e1002410.
3 Rescorla RA (1988) Pavlovian conditioning. It’s not what you think
it is. Am Psychol 43(3):151–160.
4 Bray S, Rangel A, Shimojo S, Balleine B, O’Doherty JP (2008)
The neural mechanisms underlying the influence of pavlovian
cues on human decision making. J Neurosci 28(22):
5861–5866.

5 Dayan P, Niv Y, Seymour B, Daw ND (2006) The misbehavior
of value and the discipline of the will. Neural Netw 19(8):
1153–1160.
6 Botvinick MM, Niv Y, Barto AC (2009) Hierarchically
organized behavior and its neural foundations: A
reinforcement learning perspective. Cognition 113(3):
262–280.
7 Solway A, et al. (2014) Optimal behavioral hierarchy. PLOS Comput
Biol 10(8):e1003779.
8 Botvinick MM (2012) Hierarchical reinforcement learning
and decision making. Curr Opin Neurobiol 22(6):956–962.

2930 | www.pnas.org/cgi/doi/10.1073/pnas.1500975112 Daniel et al.

www.pnas.org/cgi/doi/10.1073/pnas.1500975112

