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Definition

Bayesian analysis is a method for reasoning probabilistically about parameters of a model given
some observed data. Applied to behavioral data, Bayesian analysis can be used to fit and
compare models of cognition. This approach to behavioral data analysis offers a number of
advantages over classical (frequentist) analysis, including a coherent representation of
uncertainty, flexibility to handle complex models and missing data, and an avoidance of
pathologies inherent to significance testing based on p-values.

Detailed Description

Bayesian analysis starts with the specification of a joint distribution on the data D and
parameters (or hidden variables) H. This joint distribution can be broken down into two
components: P(D,H) = P(D|H) P(H). The first component, P(D|H), is known as the likelihood, and
the second component, P(H), is known as the prior. Given some data, we are interested in the
conditional distribution, P(H| D), commonly known as the posterior; this distribution specifies
everything we know about H given the observed data and our prior beliefs. Bayes’ rule
stipulates how to form the posterior from the prior and likelihood:

P(D|H)P(H)
2y P(DIH)P(H)
The denominator is sometimes known as the marginal likelihood. When H is continuous, the

P(HID) =

summation is replaced by integration. A practical overview of Bayesian analysis can be found in
Kruschke (2010). Below we discuss some of the relevant issues that arise in applying Bayesian
analysis to behavioral data.

Posterior Probabilities vs. P-values

The classical approach to behavioral data analysis is based on the null hypothesis significance
testing (NHST) framework, in which the significance of a summary statistic is evaluated by
calculating the probability of obtaining an equally or more extreme value if the statistic was
drawn from a null distribution. If the resulting p-value is below some conventional threshold
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(e.g., 0.05), the null hypothesis is rejected and the result is considered significant. This
framework is related to Bayesian analysis: the p-value is the tail probability of the likelihood
when H corresponds to the null hypothesis.

In contrast to p-values, posterior probabilities quantify the evidential support for all possible
values of H. Often different values of H can plausibly have generated the data, and the
posterior captures this uncertainty. In contrast, the confidence intervals of NHST express the
range of H that would not be rejected by a significance test.

Under NHST, when multiple tests are applied to a data set, the probability of erroneously
declaring a null effect significant increases. This necessitates some kind of correction for
multiple comparisons. Bayesian analysis does not require such corrections, since there is a
single posterior distribution that does not depend on how many ways you examine it.

Hierarchical Models

A powerful use of Bayesian analysis is the construction of hierarchical models in which
uncertainty about the parameters of the prior is captured by placing a “hyper-prior” on these
parameters (Lee 2011). An important example of this is modeling individual differences: each
subject in a study has a separate set of parameters, but these parameters are coupled by virtue
of being drawn from a common group-level distribution. One advantage of hierarchical models
is that they allow sharing of “statistical strength” between subjects, such that the parameter
estimates of one subject are informative about the parameter estimates of another subject. At
the same time, subjects are allowed to express idiosyncratic parameters. Hierarchical models
can thus strike a balance between forcing all subjects to have the same parameters and
modeling each subject separately.

Model Comparison

An important problem in cognitive modeling is model comparison. The Bayesian approach to
this problem centers on calculating the Bayes factor (Kass & Raftery 1995), which is the ratio of
marginal likelihoods for two models. The Bayes factor rewards models that fit the data better,
but penalizes model complexity. Intuitively, complex models are able to fit a given data set
better than simple models, but complex models also spread their probability mass over many
data sets, and consequently the probability of any given data set will tend to be smaller.

Whereas the posterior will often be relatively insensitive to the prior when the amount of data
is large, Bayes factors can be exquisitely sensitive to the choice of prior (Kass & Raftery 1995).
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This has sometimes been considered a drawback of Bayesian model comparison. However,
others (e.g., Vanpaemel 2010) have argued that prior sensitivity is reasonable, since the prior
should be considered part of a fully specified cognitive model.

Computation

For all but a small class of models, employing Bayes’ rule exactly is computationally intractable.
This happens because the marginal likelihood computation involves summing over all possible
hypotheses, which is infeasible for large hypothesis spaces. Consequently, most algorithms for
Bayesian analysis use approximations. Most commonly, these algorithms approximate the
posterior with a set of stochastic samples—so-called Monte Carlo approximations (Robert &
Casella 2004). As the number of samples increase, the approximation becomes increasingly
accurate. There are several software packages that compute Monte Carlo approximations
automatically given a probabilistic model (see Kruschke 2010 for an introduction), making
Bayesian methods widely accessible for behavioral data analysis.
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